mwbr.net
当前位置:首页 >> 1/1*2*3+1/2*3*4+……1/n(n+1)(n+2)=? >>

1/1*2*3+1/2*3*4+……1/n(n+1)(n+2)=?

1/1*2+1/2*3+1/3*4+...+1/n(n+1) =(1/1)-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)+...+(1/n)-[1/(n+1)] =1-1/(n+1) =(n+1-1)/(n+1) =n/(n+1).

准确值是求不出来的,但有一个近似值 利用“欧拉公式” 1+1/2+1/3+……+1/n =ln(n)+C,(C为欧拉常数) 具体证明看下面的链接 欧拉常数近似值约为0.57721566490153286060651209 这道题用数列的方法是算不出来的 Sn=1+1/2+1/3+…+1/n >ln(1+1)+ln(1+1/2)...

1、可以用公式求和 n(n+1)=n²+n 1*2+2*3+3*4+……+n(n+1) =1+2²+3²+…+n²+1+2+3+…+n =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3 2、可以用裂项求和 n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 1*2+2*3+3*4+……+n(n+1) =[(1*2*3-0*1...

如图所示

证明:首数加尾数等于n+1,次首数加次尾数等于n+1。 所以一共n/2个n+1。如果n为偶,自然没问题;如果n为奇数,那么中间的数等于(n+1)/2,和就是(n+1)/2+(n-1)×(n+1)/2=n(n+1)/2。 所以1+2+3+4+5+6......+n=n(n+1)/2。 扩展资料:等...

求1^2+2^2+3^2+...+n^2的值(答案n(n+1)(2n+1)/6) 方法一:利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+...

证明:1×2+2×3+3×4+......+n(n+1) =(1×1+1)+(2×2+2)+(3×3+3)+......(n×n+n) =(1^2+2^2+3^2+......n^2)+(1+2+3+......n) =n*(n+1)*(2*n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

解法一: 1×2+2×3+3×4+...+n(n+1) =⅓×[1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+...+n(n+1)(n+2)-(n-1)n(n+1)] =⅓n(n+1)(n+2) 解法二: 考察一般项第k项,k(k+1)=k²+k 1×2+2×3+3×4+...+n(n+1) =(1²+2²+3²+...+n...

C语言源程序: #include "stdio.h" void main() { int i, n; int f = 1; /* 符号 */ double sum; /* 各项之和 */ printf("input value of n : "); scanf("%d", &n); sum = 0.0; for(i=1; i

网站首页 | 网站地图
All rights reserved Powered by www.mwbr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com